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This article reviews studies of a 
potential role for acetaldehyde, 
a toxic byproduct of alcohol 

(i.e., ethanol) metabolism, in ethanol’s 
effects in the central nervous system 
(CNS); the metabolism of ethanol to 
acetaldehyde in the brain; the metabolism 
of acetaldehyde in brain cells; the results 
of ethanol oxidation to form acetalde-
hyde; and acetaldehyde’s effects on 
behavior. The studies cited primarily 
are those dealing with acute or very 
short-term administration of ethanol. 
The role of acetaldehyde in tolerance 
and dependence or in the peripheral 
effects of ethanol is not covered. 

Acetaldehyde’s Role in	 
Ethanol’s Effects 	

Acetaldehyde, a toxic byproduct of	 
ethanol metabolism, may be at least	 
partially responsible for ethanol’s actions	 
in the CNS (Hunt 1996; Hashimoto 
et al. 1989; Bergamaschi et al. 1988; 
Zimatkin and Deitrich 1997; Thadani 
and Truitt 1977; Collins et al. 1988; 

Heap et al. 1995). However, several 
factors cast doubt on this hypothesis. 
First, avid metabolism of acetaldehyde 
by the liver keeps blood levels of 
acetaldehyde following ethanol inges-
tion extremely low (Sippel and Eriksson 
1975). The levels of acetaldehyde in 
most people after ethanol ingestion are 
nearly undetectable in the blood, on 
the order of one micromole.1 Second, 
even if the blood acetaldehyde levels 
are significant, either because of genetic 
variation in alcohol-metabolizing 
enzymes or the presence of drugs that 
allow build-up of acetaldehyde, 
acetaldehyde does not seem to be able 
to penetrate blood vessels into the brain 
(i.e., the blood–brain barrier), and sub-
stantial blood levels are required before 
acetaldehyde levels increase in the brain 
(Tabakoff et al. 1976; Westcott et al. 
1980; Sippel 1974; Zimatkin and 
Pronko 1995). This is attributed pri­
marily to the presence of the enzyme 
that converts acetaldehyde to acetate 

(i.e., aldehyde dehydrogenase [ALDH]) 
in the blood–brain barrier, which may 
help keep brain acetaldehyde levels low 
(Petersen 1985; Tampier et al. 1993). 
Third, although one could use the 
compound pyrazole to inhibit the reac­
tion by which the enzyme alcohol 
dehydrogenase (ADH) breaks down 
ethanol (i.e., oxidation), and thus 
inhibit the formation of acetaldehyde, 
intoxication still would result, suggesting 
that acetaldehyde does not play a sig­
nificant role in ethanol’s effects on the 
brain. Indeed, Goldstein and Zaechelein 
(1983) used pyrazole to study intoxica­

1 A micromole represents a concentration of 1/1,000,000 
(one millionth) molecular weight per liter (mol/L). 
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tion in mice using a vapor chamber 
method. In this method, the metabolism 
of inhaled ethanol is slowed, providing 
for more prolonged and consistent blood 
levels of ethanol, producing physical 
dependence in mice. 

Metabolism of Ethanol to 
Acetaldehyde in the Brain 
These considerations would be irrele­
vant if the brain could produce its own 
acetaldehyde from ethanol. Although 
there had been several reports of the 
oxidation of ethanol in the brain 
(Sutherland et al. 1958; Raskin 1973; 
Raskin and Sokoloff 1974; Raskin and 
Sokoloff 1968; Raskin and Sokoloff 
1970a, b; Raskin and Sokoloff 1972a, 
b), this idea largely was dismissed by 
the findings of Mukherji and colleagues 
(1975), whose studies showed that 
ethanol did not break down to acetalde­
hyde in the brain. 

Catalase. Catalase, the enzyme that 
facilitates the breakdown of hydrogen 
peroxide to oxygen and water, may play 
a role in the production of acetaldehyde 
from ethanol in the brain. Cohen and 
colleagues (1980) demonstrated that 
catalase in conjunction with hydrogen 
peroxide will oxidize ethanol in the 
brain. Although the authors did not 
directly demonstrate the production of 
acetaldehyde (and thus the metabolism 
of ethanol), in this system, they did 
provide impetus to other investigators’ 
attempts. Researchers initially were 
thwarted in their attempts to document 
metabolism of ethanol in the brain when 
they discovered nonenzymatic (i.e., 
artifactual) production of acetaldehyde. 
It was determined that the iron typically 
found in red blood cells (i.e., hemoglobin) 
caused this nonenzymatic formation of 
acetaldehyde from ethanol, thus mask­
ing any enzymatic production of 
acetaldehyde. Two groups, nearly 
simultaneously, overcame these problems. 
Aragon and colleagues (1992) demon­
strated that acetaldehyde was produced 
from ethanol in rat brains with all blood 
removed. Gill and colleagues (1992) 
were able to prevent the artifactual for­
mation of acetaldehyde and show the 
production of acetaldehyde from 

ethanol in rat brain tissue. In both studies, 
inhibitors of catalase also were effective 
in inhibiting the production of acetalde­
hyde. On the other hand, inhibitors of 
the enzymes cytochrome P450 and 
ADH—key enzymes involved in alcohol 
metabolism— were ineffective. Other 
investigators quickly confirmed these 
findings (Hamby-Mason et al. 1997; 
Aspberg et al. 1993; Zimatkin et al. 
1999). In studies of cells from all parts 

The role of 
ADH in the 

metabolism of 
ethanol in the brain 

remains unclear. 

of the brain (i.e., whole-brain 
homogenates), the intensity of ethanol 
oxidation is comparatively low but may 
be much higher in the specific struc­
tures and cells known for their 
increased catalase activity (Zimatkin 
and Lindros 1996). 

Cytochrome P450. Cytochrome P450 
enzymes, which are involved in ethanol 
metabolism in the liver, have been impli­
cated in the metabolism of ethanol in 
the brain. First, Warner and Gustafsson 
(1994) demonstrated the presence of 
cytochrome P450 in rat brain and its 
induction by ethanol. Cytochrome P450 
2E1, a variant of cytochrome P450 
(i.e., isozyme) that is capable of oxidiz­
ing ethanol efficiently in other tissues, 
also was found in the brain (Hansson 
et al. 1990). Its protein, messenger RNA 
(mRNA), specific activity, and induc­
tion by ethanol were found in nerve 
cells (i.e., neurons) and support cells 
(i.e., glial cells) in the following brain 
regions: cerebellum, cerebral cortex, 
thalamus, and hippocampus (Sohda 
et al. 1993; Tindberg and Ingelman-
Sundberg 1996; Upadhya et al. 2000). 
Cytochrome P450 also has been found 
in prenatal human brain cells (Khalighi 

et al. 1999). In addition, a recent study 
in rats and mice has reinforced the pos­
sibility that cytochrome P450 is involved 
in the brain’s metabolism of ethanol 
(Zimatkin et al. 2006). 

ADH. The possible role of ADH in 
the metabolism of ethanol in the brain 
remains unclear. Research originally 
suggested that only the subtype ADH3 
was expressed in the brain and that 
ethanol was not a good candidate for 
that enzyme to act on (i.e., it was a poor 
substrate) (Beisswenger et al. 1985; 
Kerr et al. 1989). Several groups (Kerr 
et al. 1989; Buhler et al. 1983) reported 
the presence of ADH1 in brain cells. 
Giri and colleagues (1989) found 
ADH3 expressed in rat brain, and 
Martinez and colleagues (2001) found 
mRNA for ADH1 and ADH4 in rat 
brain cells. Although the authors could 
not demonstrate ADH activity in anal­
ysis of whole-brain homogenates, they 
were able to detect ADH activity in 
specific neurons (i.e., granular cells and 
Purkinje cells) of the cerebellum. This 
shows that although the activity of 
ADH may be undetectable in whole 
homogenates, there may be sufficient 
activity in specific neurons to form 
acetaldehyde locally. 

The Chemical Reactions 
Allowing Oxidation of 
Ethanol to Acetaldehyde 

The oxidation of ethanol produces 
acetaldehyde (see Figure). The production 
of acetaldehyde by catalase is limited 
by the availability of hydrogen perox­
ide, a potentially harmful byproduct of 
ethanol metabolism by cytochrome 
P450. Hydrogen peroxide also can 
come from a number of other sources, 
including the enzyme monoamine oxi­
dase, ascorbic acid (vitamin C), and 
other cytochrome P450 oxidations 
(Sandri et al. 1990; Simonson et al. 
1993; Sinet et al. 1980). 

All studies of the oxidation of ethanol 
to acetaldehyde depend on the ability 
to measure the accumulation of 
acetaldehyde. This can occur only if 
the rate of removal of acetaldehyde is 
slower than its rate of formation in the 
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Figure Pathways of ethanol metabolism in the brain. The oxidation of ethanol 
produces acetaldehyde. The production of acetaldehyde by the 
enzyme catalase (found in internal cell components called peroxi­
somes) requires hydrogen peroxide (H2O2). The enzyme cytochrome 
P4502E1 is present in brain cell structures in the smooth endoplasmic 
reticulum (microsomes). Alcohol dehydrogenase (ADH) is an enzyme 
found in the cell’s fluid or cytosol. The enzyme aldehyde dehydroge­
nase (ALDH), found in the cell’s mitochondria and cytosol, converts 
acetaldehyde to acetate. 

system under study. Substantial amounts 
of acetaldehyde are oxidized to acetate 
in these in vitro systems. This results in 
an underestimation of the rate of ethanol 
metabolism in the brain, because 
acetaldehyde is metabolized to acetate 
nearly as quickly as it is formed. Thus, 
only the net amount of acetaldehyde in 
the system is accounted for when only 
acetaldehyde accumulation is measured. 
Studies of the oxidation of ethanol to 
acetaldehyde in the brain therefore 
need to consider these limitations. 

Metabolism of Acetaldehyde 
in Brain Cells 

The metabolism of acetaldehyde in the 
brain is much less controversial than 
the metabolism of ethanol because 
ALDH enzymes have long been known 
to be present in brain cells (Deitrich 
1966; Erwin and Deitrich 1966). The 
ALDH enzyme most likely to be 
responsible for the majority of the oxi­
dation of acetaldehyde to acetate is 
ALDH2, the form found in the mito­
chondria, an internal component of the 
cell. This enzyme has a high affinity 

2 Km is a measurement used to describe the activity of an 
enzyme. It describes the concentration of the substance 
upon which an enzyme acts at which the enzyme works 
at 50 percent capacity. 

(i.e., a low Km)2 and rate of enzyme 
activity with acetaldehyde and is suffi­
cient to remove most of the acetalde­
hyde. Several other forms of ALDH are 
expressed in brain cells as well (Sophos 
and Vasiliou 2003). The localization of 
the enzyme to specific cells or areas of 
the brain could greatly influence the 
local rate of removal of acetaldehyde. 
That is, acetaldehyde is only metabo­
lized if it is present in an area of the 
brain that also has ALDH enzymes 
(Zimatkin et al. 1992). In a similar 
fashion, localization within the cell of 
the enzymes responsible for the pro­
duction of acetaldehyde (catalase in 
internal cell components called peroxi­
somes and cytochrome P450 in a net­
work of membranes within the cell 
called the endoplasmic reticulum or 
microsomes) and the enzyme of acetalde­
hyde removal—ALDH2 in the mito­
chondria—leave space and time for 
acetaldehyde to interact with other cel­
lular elements before being converted 
to acetate. That is, if acetaldehyde is 
produced in separate cellular structures 
from where it is removed, it can have an 
effect on the cell before it is metabolized. 

Acetaldehyde’s conversion to acetate 
has further implications for the cell. 
Acetate has significant CNS effects 
that are separate from those of ethanol 

(Carmichael et al. 1991; Cullen and 
Carlen 1992; Correa et al. 2003). Thus, 
administering sodium acetate in doses 
comparable with those observed after 
administering 1 to 2 g/kg ethanol pro­
duced a dose-dependent impairment of 
motor coordination (Carmichael et al. 
1991). Because acetate’s effects can be 
blocked with the use of 8-phenyltheo­
phylline, a substance that blocks recep­
tors for adenosine (a byproduct in 
acetate breakdown), it has been sug­
gested that acetate’s actions may be 
mediated by adenosine (Carmichael et 
al. 1991; Cullen and Carlen 1992). 
Moreover, administering low doses of 
acetate (0.35 to 2.8 micromolar) by 
injection into the brain through a small 
hole bored into the skull (i.e., intrac­
erebroventricular [ICV] administration) 
produced a potent decrease in motor 
activity, similar to the effects of ethanol 
and acetaldehyde on motor activity 
(Correa et al. 2003). 

Consequences of the 
Oxidation of Ethanol 
to Acetaldehyde 

Ethanol oxidation to acetaldehyde has 
several consequences, which may be 
broken down into two broad categories. 
The first is the direct binding of acetalde­
hyde to proteins (Jennett et al. 1987; 
McKinnon et al. 1987; Nakamura et 
al. 2003; Zimatkin et al. 1992), nucleic 
acids (Wang et al. 2000), and a type of 
fat (i.e., lipid) containing phosphorus 
(i.e., phospholipids) (Trudell et al. 1990, 
1991; Trudell et al. 1990; Kenney 1982, 
1984). In total, the binding to these 
cellular components probably accounts 
for very little of the acetaldehyde that 
disappears, but the consequences of 
these interactions may be highly signif­
icant because the function of these cel­
lular components can be compromised 
by this binding. The second category 
of ethanol oxidation consequences is 
indirect action. This occurs when the 
metabolism of other aldehydes that 
originate in the body (i.e., endogenous 
aldehydes) is inhibited through the 
presence of acetaldehyde. The aldehy­
des produced by the oxidation, by 
monoamine oxidase, of the brain chem-
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icals (i.e., neurotransmitters) dopamine, 
norepinephrine, and serotonin, are par­
ticularly vulnerable to this reaction 
(Deitrich and Erwin 1980). One theory 
is that acetaldehyde or the aldehydes 
of dopamine, norepinephrine, or 
epinephrine condense with these same 
neurotransmitters to produce compounds 
called tetrahydroisoquinolines that may 
be responsible for some of ethanol’s 
CNS effects themselves. Acetaldehyde 
also may condense with serotonin to 
form compounds called tetrahydro-beta 
carbolines that may be active in the brain 
as well. Thus, these amine-aldehyde 
condensation products may be respon­
sible for some of the behavioral actions 
of ethanol (Davis and Walsh 1970; 
Cohen and Collins 1970; Melchior and 
Myers 1977). Considerable controversy 
arose around this theory, especially 
because these compounds occur natu­
rally in the diet, casting doubt on the 
relevance of their presence following 
ethanol ingestion (Collins et al. 1990). 

Researchers recently have proposed 
that acetaldehyde may compete with 
malondialdehyde or 4-hydroxynonenal, 
the aldehyde products that result after 
the breakdown of lipids (i.e., lipid per-
oxidation). These aldehydes also may 
inhibit the activity of ALDHs (Luckey 
et al. 1999; Mark et al. 1997; Meyer et al. 
2004; Murphy et al. 2003). This would 
result in increased levels of acetaldehyde 
as well as of these toxic aldehydes. 

The oxidation of ethanol to acetalde­
hyde may trigger various reactions that 
ultimately have behavior-related conse­
quences, as described below. 

Acetaldehyde and Behavior 

Several studies have suggested that 
acetaldehyde is responsible for some of 
the behavioral effects (such as poor 
coordination [i.e., ataxia]) of ethanol 
(reviewed in Deitrich 2004 and Querte­
mont et al. 2005). Many of these studies 
measured the degree of relationship of 
the two variables (i.e., they were correla­
tional). That is, the studies measured the 
behavioral effects of ethanol following 
presumed alteration of levels of acetalde­
hyde in the brain by inhibiting ALDH 
or inhibiting or activating catalase. 

Acetaldehyde has been measured 
directly in the brain in only a few stud­
ies (Jamal et al. 2003, 2004, 2005). In 
those studies, ALDH was inhibited, 
resulting in relatively high levels of 
acetaldehyde in the brain. It is assumed 
that the proximal cause of these behav­
ioral effects (such as ataxia or loss of 
the righting response) is the altered 
amount of acetaldehyde in the brains 
of the animals studied. 

On the other hand, mice with about 
half the usual levels of catalase in the 
brain (i.e., acatalasemic mice), which 
should have less acetaldehyde from 
ethanol in the brain compared with 
control mice, had longer sleep times 
after ethanol intake than control mice 
(Aragon and Amit 1993; Vasiliou et al. 
2004). This suggests that acetaldehyde 
does not influence ethanol-induced sleep 
times. Similar results were obtained using 
mice that had been genetically modified 
to have the ethanol-metabolizing enzyme 
CYP2E1 absent. The mice exhibited 
longer ethanol-induced sleep times, 
especially at higher ethanol doses; they 
also produced lower amounts of acetalde­
hyde following the incubation of 
ethanol with brain cell structures con­
taining ethanol-metabolizing enzymes 
(i.e., microsomes) compared with con­
trol animals (Vasiliou et al 2004). In 
addition, induction of brain catalase 
activity resulted in decreased loss of 
righting reflex (LORR), which is used to 
estimate hypnotic sensitivity (a behav­
ioral response) to ethanol, whereas 
reduced brain catalase activity resulted 
in increased LORR, showing involve­
ment of brain catalase in the hypnotic 
effect of ethanol (Correa et al. 2001). 

Ethanol Preference 
Rats selectively bred to have either high 
or low preference for ethanol are useful 
animal models for the study of alcohol 
consumption. Alcohol-preferring (P) 
and nonpreferring (NP) rats have been 
shown to differ in hypnotic sensitivity 
to ethanol; thus, P rats are innately less 
sensitive to the effects of ethanol than 
NP rats (Lumeng et al. 1982). 

Researchers have used P and NP 
pairs of rat lines or strains to study rela­
tionships between catalase, acetaldehyde, 

and ethanol preference. Although none 
of the studies below included direct 
measurements of brain ethanol oxida­
tion in vitro, brain acetaldehyde levels 
in vivo, or acetaldehyde accumulation 
in vitro, their findings do offer some 
implications regarding the relationship 
between brain acetaldehyde and ethanol 
preference. 

As discussed previously, catalase plays 
a role in the production of acetaldehyde 
in the brain. The catalase inhibitor 
aminotriazole attenuated ethanol pref­
erence in mice (Koechling and Amit 
1994), suggesting that inhibiting cata­
lase results in decreased levels of 
acetaldehyde and a decline in this 
particular ethanol-induced behavior. 
Consistent with these findings, Amit 
and Aragon (1988) found that blood 
catalase from rats naïve to ethanol corre­
lated positively with ethanol preference 
in the animals (blood and brain cata­
lase also correlated positively after 
exposure to ethanol). Increased catalase 
presumably would mean an increased 
rate of production and increased brain 
levels of acetaldehyde with resultant 
increases in preference. Similar studies 
have found that catalase correlates with 
alcohol intake in humans as well 
(Koechling and Amit 1992). 

ALDH in the brain also positively 
correlates with ethanol preference. Indeed, 
Amir (1978) found that rats’ ethanol 
preference better correlated with brain 
ALDH than with liver ALDH. This 
would support the idea that blood lev­
els of acetaldehyde (produced in the 
liver) are less important to establishing 
a preference for alcohol than brain levels 
of acetaldehyde. High blood acetalde­
hyde levels, resulting from a genetic 
defect in ALDH in Asian populations, 
do produce decreased ethanol intake 
(Harada et al. 1982), as does treatment 
with ALDH inhibitors such as disulfiram 
(Antabuse®) (Chick et al. 1992). High 
ALDH activity would presumably 
indicate a lower level of brain acetalde­
hyde because of increased rates of oxi­
dation. Higher ALDH and lower 
acetaldehyde levels are not consistent 
with the positive correlation between 
catalase activity and ethanol preference. 
Also, acatalasemic mice have a higher 
preference for ethanol than do control 
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mice (Aragon and Amit 1993). Vasiliou 
and colleagues (2006) reported that 
acatalasemic mice accumulate only 
about 50 percent as much acetaldehyde 
from ethanol in vitro as control mice 
and that they have about half the brain 
catalase activity as that in the brain of 
control mice. This would not totally 
explain the decreased ethanol metabolism 
rates because catalase is not the only 
enzyme capable of oxidizing ethanol in 
the brain. Previous studies on catalase 
contribution to ethanol oxidation were 
performed using catalase inhibitors capa­
ble of inhibiting the activity of other 
ethanol-metabolizing enzymes (P4502E1 
and ALDH); therefore, this finding 
using genetics seems to be a more useful 
tool. Other researchers have conducted 
extensive research that provides further 
support for the involvement of brain 
catalase in ethanol-induced behavioral 
effects. This research also supports the 
notion that acetaldehyde may be pro­
duced directly in the brain by catalase 
and that it may be an important regu­
lator of ethanol’s locomotor effects (for 
example, see Sanchis-Segura et al. 1999). 

Acetaldehyde’s Actions in the Brain 
Researchers also have studied the actions 
of acetaldehyde in the brain directly, 
usually with ICV infusions of acetalde­
hyde to bypass the metabolism of 
acetaldehyde by the liver. Smith and 
colleagues (1984) found that conditioned 
place preference3 could be induced by 
ICV infusions of acetaldehyde, suggest­
ing that low levels of acetaldehyde have 
reinforcing properties. Brown and col­
leagues (1979) had found that rats would 
administer acetaldehyde, but not ethanol, 
intracerebroventricularly. Conversely, 
conditioned taste aversion can be induced 
by acetaldehyde. This action can be 
blocked by alpha-methyl-para-tyrosine, 
a substance that inhibits the neuro­
transmitters epinephrine (adrenaline) 
and dopamine—key brain chemicals 
involved in addiction. This indicated 
that perhaps the adrenergic system is 
involved in acetaldehyde’s action in the 
brain (Aragon et al. 1991). Rodd-
Henricks and colleagues (2000, 2002) 
found that rats genetically predisposed 
to prefer alcohol would press a lever to 

infuse ethanol and acetaldehyde directly 
into the ventral tegmental area (VTA), 
located in the midbrain. Using similar 
techniques, it was found that rats would 
lever press for infusions of the conden­
sation product between acetaldehyde 
and dopamine (i.e., salsolinol) directly 
into the nucleus accumbens, a collec­
tion of neurons involved in the brain’s 
reward system (McBride et al. 2002). 
Arizzi and colleagues (2003) studied the 
in vivo effects of intracerebroventricularly 
administered ethanol, acetaldehyde, 
and acetate on lever-pressing tasks. 
These studies showed that acetaldehyde 
appears to induce activating or disin­
hibiting effects and thus can produce 
at least some of the effects of ethanol, 
whereas acetate is more potent than the 
other substances at producing actions 
that lead to a suppression of lever press­
ing and locomotion and thus may be 
implicated in the motor impairments 
induced by ethanol. Unfortunately, the 
researchers gave the same dose of all three 
agents in spite of the large (1,000-fold) 
difference in their concentrations follow­
ing ethanol administration peripherally. 

Numerous studies show the possible 
pathophysiological effects of acetalde­
hyde. The theories of the condensation 
of acetaldehyde with biogenic amines 
to produce new compounds are 
reviewed above. Although this reaction 
certainly occurs in vivo, the importance 
of these condensation products to 
ethanol’s actions in the brain remains 
speculative. In a similar vein, acetalde­
hyde, by substrate competitive inhibi­
tion of ALDH, has been postulated to 
cause an increase in the aldehydes derived 
from biogenic amines (Deitrich and 
Erwin 1980). That is, ALDH can oxidize 
acetaldehyde and aldehydes derived 
from biogenic amines. When acetalde­
hyde is absent ALDH can oxidize other 
aldehydes. When acetaldehyde is pre­
sent, acetaldehyde is bound to ALDH 
and is oxidized so other aldehydes are 
oxidized at a slower rate or not at all 
by ALDH. No studies have directly 
measured the purported increase in 
these aldehydes. However, these alde­
hydes do have suggested physiological 
actions. For example, indole-3­
acetaldehyde, a biogenic aldehyde, 
reacts with certain substances 

(i.e., phospholipids) to create specific 
physiological effects, as indicated by a 
change in spectrophotometric absorption4 

(Nilsson and Tottmar 1985). This 
shows what can happen to biogenic 
aldehydes if they are not oxidized by 
ALDH. When aldehydes were directly 
applied to neurons, the biogenic alde­
hydes derived from dopamine and 
serotonin had a direct depressant effect 
on neurons in the neocortex and cere­
bellum (Palmer et al. 1986). 

Many other studies of the direct 
actions of acetaldehyde are available. 
For example, large doses of acetalde­
hyde given ICV caused decreases of 
dopamine, serotonin, and a product of 
dopamine metabolism (i.e., a metabo­
lite) (i.e., homovanillic acid [HVA]) 
and increases in a metabolite of sero­
tonin (i.e., 5-hydroxyindoleacetic acid 
[5HIAA]) in an analysis of fluid from 
the nucleus accumbens (Ward et al. 
1997). These and similar reports do 
not provide a consistent dataset from 
which likely mechanisms can be deduced. 
Part of the problem is that accurate 
measurements of acetaldehyde in the 
brain tissue have been difficult (see 
Westcott et al. 1980), and so no sys­
tematic correlation of acetaldehyde 
brain levels with behavioral effects has 
been carried out. Mascia and colleagues 
(2001) studied the effect of acetalde­
hyde on cloned neurotransmitter recep­
tors in frog oocytes. Of those studied, 
only a receptor for the amino acid 
glycine was sensitive to acetaldehyde. 

In summary, research has now pro­
vided ample evidence that ethanol is 
metabolized to acetaldehyde and then 
acetate in the brain. Several studies also 
suggest that the presence of acetalde­
hyde in the brain is responsible for at 
least some of the effects of ethanol. 

3 To induce conditioned place preference, an animal is 
injected with the drug being studied and is placed in a 
test chamber with distinctive environmental cues. This 
procedure is repeated for several days. During these 
conditioning trials, the animal develops an association 
between the subjective state produced by the drug and 
the environmental cues present during the drug state. 
When the subject is tested in an apparatus that contains 
the drug-related environmental cues in one compartment 
and neutral cues in another, it voluntarily moves toward 
the compartment containing the drug-related cues. 

4 Spectrophotometry is a determination of the concentra­
tion of a material in a sample by measurement of the 
amount of light the sample absorbs. 
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The field will advance most rapidly by 
simultaneous measurement of acetalde­
hyde in the brain or brain areas and 
correlating these levels with specific 
behavioral actions. ■ 
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